小学六年级数学必考知识点 3篇 【热点话题】

作者:故事兔

小学六年级数学内容多,是小学阶段所学数学知识的综合。以下是本站小编为大家带来的小学六年级数学必考知识点 3篇,希望能帮助到大家!

  小学六年级数学必考知识点·1

小学六年级数学必考知识点 3篇 【热点话题】

  【数量关系】

  1份数量×份数=总量

  总量÷1份数量=份数

  总量÷另一份数=另一每份数量

  【解题思路和方法】

  先求出总数量,再根据题意得出所求的数量。

  例1

  服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。原来做791套衣服的布,现在可以做多少套?

  解

  (1)这批布总共有多少米?3.2×791=2531.2(米)

  (2)现在可以做多少套?2531.2÷2.8=904(套)

  列成综合算式3.2×791÷2.8=904(套)

  答:现在可以做904套。

  例2

  小华每天读24页书,12天读完了《红岩》一书。小明每天读36页书,几天可以读完《红岩》?

  解

  (1)《红岩》这本书总共多少页?24×12=288(页)

  (2)小明几天可以读完《红岩》?288÷36=8(天)

  列成综合算式24×12÷36=8(天)

  答:小明8天可以读完《红岩》。

  例3

  食堂运来一批蔬菜,原计划每天吃50千克,30天慢慢消费完这批蔬菜。后来根据大家的意见,每天比原计划多吃10千克,这批蔬菜可以吃多少天?

  解

  (1)这批蔬菜共有多少千克?50×30=1500(千克)

  (2)这批蔬菜可以吃多少天?1500÷(50+10)=25(天)

  列成综合算式50×30÷(50+10)=1500÷60=25(天)

  答:这批蔬菜可以吃25天。

  小学六年级数学必考知识点·2

  一、等式、方程与代数

  1.等式:等号左边的数值与等号右边的数值相等的式子叫做等式。等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。

  2.方程式:含有未知数的等式叫方程式。

  3.一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。

  4.代数:代数就是用字母代替数。

  5.代数式:用字母表示的式子叫做代数式。

  如:3x =ab+c

  二、数量关系计算公式

  单价×数量=总价

  单产量×数量=总产量

  速度×时间=路程

  工效×时间=工作总量

  加数+加数=和

  一个加数=和 – 另一个加数

  被减数-减数=差

  减数=被减数-差

  被减数=减数+差

  因数×因数=积

  一个因数=积÷另一个因数

  被除数÷除数=商

  除数=被除数÷商

  被除数=商×除数

  三、表面积和体积

  1.三角形的面积=底×高÷2。 公式 S= a×h÷2

  2.正方形的面积=边长×边长 公式 S= a2

  3.长方形的面积=长×宽 公式 S= a×b

  4.平行四边形的面积=底×高 公式 S= a×h

  5.梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2

  6.内角和:三角形的内角和=180度。

  7.长方体的表面积=(长×宽+长×高+宽×高 ) ×2 公式:S=(a×b+a×c+b×c)×2

  8.正方体的表面积=棱长×棱长×6 公式: S=6a2

  9.长方体的体积=长×宽×高 公式:V = abh

  10.长方体(或正方体)的体积=底面积×高 公式:V = abh

  11.正方体的体积=棱长×棱长×棱长 公式:V = a3

  12.圆的周长=直径×π 公式:L=πd=2πr

  13.圆的面积=半径×半径×π 公式:S=πr2

  14.圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh

  15.圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2

  16.圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh

  17.圆锥的体积=1/3底面×积高。公式:V=1/3Sh

  四、常用单位换算

  1.长度单位换算

  1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米

  2.面积单位换算

  1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米

  3.体(容)积单位换算

  1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升 1立方厘米=1毫升 1立方米=1000升

  4.重量单位换算

  1吨=1000 千克 1千克=1000克 1千克=1公斤

  人民币单位换算

  1元=10角 1角=10分 1元=100分

  5.时间单位换算

  1世纪=100年 1年=12月 大月(31天)有:1\\3\\5\\7\\8\\10\\12月 小月(30天)的有:4\\6\\9\\11月 平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时 1时=60分 1分=60秒 1时=3600秒

  五、奥数常用公式

  1.平均数:总数÷总份数=平均数

  2.和差问题:(和+差)÷2=大数 (和-差)÷2=小数

  3.和倍问题:和÷(倍数-1)=小数

  小数×倍数=大数 (或者 和-小数=大数)

  4.差倍问题:差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数)

  5.相遇问题

  相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间

  6.追及问题

  追及距离=速度差×追及时间 追及时间=追及距离÷速度差 速度差=追及距离÷追及时间

  7.流水问题

  顺流速度=静水速度+水流速度

  逆流速度=静水速度-水流速度

  8.浓度问题

  溶质的重量+溶剂的重量=溶液的重量

  溶质的重量÷溶液的重量×100%=浓度

  溶液的重量×浓度=溶质的重量

  溶质的重量÷浓度=溶液的重量

  9.利润与折扣问题

  利润=售出价-成本

  利润率=利润÷成本×100%=(售出价÷成本-1)×100%

  涨跌金额=本金×涨跌百分比

  利息=本金×利率×时间

  税后利息=本金×利率×时间×(1-20%)

  10、盈亏问题

  (盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数

  六、常用数据及规律

  1.圆周率常取数据

  3.14×1=3.14 3.14×2=6.28 3.14×3=9.42 3.14×4=12.56 3.14×5=15.7 3.15×6=18.84 3.14×7=21.98 3.14×8=25.12 3.14×9=28.26

  2.常用特殊数的乘积

  25×3=75 25×4=100 25×8=200 125×3=375 125×4=500 125×8=1000 625×16=10000 37×3=111

  3.常用平方数

  11?2;=121 12?2;=144 13?2;=169 14?2;=196 15?2;=225 16?2;=256 17?2;=289 18?2;=324 19?2;=361 10?2;=100 20?2;=400 30?2;=900 40?2;=1600 50?2;=2500 60?2;=3600 770?2;=4900 80?2;=6400 15?2;=225 25?2;=625 35?2;=1225 45?2;=2025 55?2;=3025 65?2;=4225 75?2;=5625 85?2;=7225

  4.关于常用分数与小数的互化

  1/2=0.5 4=0.25 3/4=0.75 1/5=0.2 2/5=0.4 3/5=0.6 4/5=0.8 1/8=0.125 3/8=0.375 5/8=0.625 7/8=0.875 1/20=0.05 3/20=0.15 7/20=0.35 9/20=0.45 11/20=0.55 1/25=0.04 2/25=0.08 3/25=0.12 4/25=0.16 6/25=0.24

  5.常用立方数

  1?3;=1 2?3;=8 3?3;=27 4?3;=64 5?3;=125 6?3;=216 7?3;=343 8?3;=512 9?3;=729

  小学六年级数学必考知识点·3

  1、什么是比

  两个数相除又叫做两个数的比。比如3:2中“:”是比号,读作“比”;比号前面的数叫做比的前项,比号后面的数叫做比的后项。

  2、比的后项不能为0。

  3、比的基本性质:比的前项和后项同时乘或除以(0除外)相同的数,比值不变。

  4、求比值:比的前项除以后项所得的商,叫做比值。比值可以用分数、小数和整数表示。

  5、化简比:把比化成最简整数比叫做化简比。

  6、最简整数比的特征:最简整数比的前项和后项都是整数,且是一对互质数,也就是比的前项和后项的最大公因数是1。

  7、求比值和化简比的主要区别:

  (1)求比值是求比的前项除以后项所得的商;化简比是把两个数的比化成最简单的整数比,比的前项、后项都是整数且两个数是互质数。

  (2)求比值的结果是一个数,这个数可以是整数、分数或者小数;化简比的结果还是一个比,并且要写成比的形式。

  8、比例的意义:表示两个比相等的式子叫做比例。它是判定两个比能否组成比例的依据之一;组成比例的四个数叫做它的项,分为内项和外项。

  比如3:4=6:8中,4和6称为内项,3和8称为外项。

  9、比例的基本性质:在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质;它是判定两个比能否组成比例的另一个重要依据。运用比例的基本性质可以解比例。

  10、解比例:根据比例的基本性质,如果已知比例中的任意三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例。

  11、正比例与反比例的概念及意义

  正比例的意义:两种相关联的量,一种量变化另一个量也随着变化;对应的两个数的比值(商)一定,这两种量就叫做成正比例的量;y:x=K (K定值);

  如:速度=路程:时间,速度一定的情况下,随着时间的推移,路程值也变大。速度路程与时间成正比例关系。

  反比例的意义:两种相关联的量,一种量变化另一个量也随着变化;对应的两个数的积一定,这两种量就叫做成反比例的量;反比例的关系式:xy=K (K 定值)。

  如:圆柱体积=底面积×高,体积一定的情况下,底面积增加,高减小;底面积减小,高增加。底面积与高成反比例。

  12、按比例分配问题

  (1)定义:把一个数量按照比例进行分配的问题。

  (2)解法:把比的各项相加得到总份数,各项与总份数之比,就是各个分量在总量中所占的份额,从而求出各个分量。

  按比例分配问题的例题请同学们点击茂喵喵课堂系列:六年级数学必考题型一百道027-转化连比问题茂喵喵课堂系列:六年级数学必考题型一百道026-比的问题

声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:403855638#qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。